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The Wiener index of a molecular graph G is defined as the sum of all distances between the atoms of G. Here, distance 
between two atoms is defined as the length of a minimum path connecting them. Nakayama and Lin in [Tetrahedron 
Letters, 38 (34) (1997), 6043-6046] prepared the organosilicon dendrimer composed of 16 thiophene rings, C64H44S16Si5. In 

this paper the Wiener index of the general form of this dendrimer is computed for the first time. 
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1. Introduction 
 

A graph G is defined as a pair G = (V,E), where V is 

defined to be a finite non-empty set of vertices and E is the 

set of edges. A molecular graph is a graphical model for a 

molecule in which atoms are the set of vertices and edges 

are bonds between them. The distance between the 

vertices x and y, d(x,y), is defined as the length of a 

shortest path connecting them. The Wiener index is 

defined as the half-sum of all distances in the hydrogen-

depleted graph representing the skeleton of the molecule 

[1]. We encourage the reader to consult papers [2,3] for 

more information on chemical meaning and mathematical 

properties of the Wiener index. 

Dendrimers are highly branched macromolecules. 

These molecules constructed from a core and some similar 

branches connected to the core in a mathematical 

progression [4]. Diudea and his co-workers [5-10] 

considered the topological properties of some infinite 

classes of dendrimers.  In some recent papers [11-16] the 

authors spent their times for computing exact formulas for 

the Wiener type indices of dendrimers. In the present 

article, a new efficient method is presented by which it is 

possible to compute the Wiener index of graphs 

constructed from independent cycles. Here two cycles are 

said to be independent if they don’t have common edge. 

We apply our method for the general form of an 

organosilicon dendrimer G[n], Fig. 1 [17]. 

Throughout this paper, our notation is standard and 

taken mainly from the standard books of graph theory.  
 

 

 

 

 

Fig. 1. The Molecular Graph of G[1] (left) 

and G[2] (right). 

 
 

2. Results and discussion 
 

The aim of this section is to compute the 

organosilicon dendrimer G[n], n ≥ 1. This dendrimer is 

first synthesized in 1997 [17]. The molecular graph of 

G[n] is containing  ∑      
    =  (    ) pentagons and 

so G[n] is not bipartite. It also has  ∑      
        

       vertices outside pentagons. If gn denotes the 

number of vertices of organosilicon dendrimer G[n] then  

 

gn =  (∑        
        )              . 

 

From the molecular graph of organosilicon dendrimer, 

one can see that G[n] is constructed from four isomorphic 

branches having a common vertex. So, each branch has 

exactly  (      ) vertices. We now describe our 

method. Let G be a connected graph and  be a set of 

shortest paths in G such that for each vertex x, y  V(G), 

there is a unique shortest path in  connecting x and y. 

Suppose e is an edge of G and nR(e) is the number of paths 

in  passing e. Then  
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W(G) = ∑   (   )  ∑   ( )   ( )       ( )        (1) 

 

In the following results we fix a set  of shortest 

paths in G and assume that for a natural number d, d
c
 = gn 

 d. Moreover, a pentagon P in G[n] is called terminal, if it 

has exactly four vertices of degree 2. Otherwise, we call P 

to be internal. 

 

Lemma 1. Suppose A[n] denotes the set of edges of 

G[n] outside pentagons. Then 

 

∑   ( )                            

     

     
 

Proof. From the Fig. 1, it is easy to see that for each 

non-boundary internal pentagon P of G[n] there are two 

cut edges of G[n] connecting to P. By deleting these cut 

edges of G[n], we obtain two components where one of 

them has exactly Sr or Sr – 5 vertices, 1 ≤ r ≤ n – 1. Here, r 

denotes distance from core. We denote by (Sr)
c
 or (Sr – 5)

c
 

the number of vertices of other component. Suppose e is 

such a cut edge. Then each shortest path connecting 

vertices from two components mentioned above traverse e. 

So, nR(e) = Sr  (Sr)
c
 or (Sr–5)  (Sr–5)

c
 and the number of 

such edges is 4 3
n – r

. Therefore,  

 

 

∑   ( )              

     
 

    [∑   
   

   
(     (    )

   (      )

 (      ) ) ] 

=                     
                               

 

 

A pentagon P of G[n] is called terminal, if it has 

exactly four vertices of degree 2. Otherwise, we call P, 

internal. 

 

Lemma 2. Suppose U[n] is the set of all edges of 

G[n] on cycles of length five. Then  

 

 

∑   ( )             
   

 
            

      

     
 

 

Proof. Consider an internal pentagon P of G[n] 

depicted in Fig. 2. Using a similar method as those are 

given in the proof of Lemma 1, there exists a positive 

integer r such that: 

 

nR(e1) = (Sr  3) ((Sr – 3)
c
 – 2) + 1 and nR(e2) = 

= (Sr  4) ((Sr – 4)
c
 – 2) + 1. 

 

 
Fig. 2. An Internal Pentagon in G[n]. 

 

 

Since the elements of  are shortest paths of G[n], we 

have: 

 

nR(e3) = 2(Sr – 4) + 1, nR(e4) = 2(Sr – 1)
c
 + 1, nR(e5) = (Sr  

4) + (Sr – 1)
c
 + 1. 

 

By the Fig. 1, the numbers of internal pentagons are        

4  3
n–r

, 2 ≤ r ≤ n. We now consider a terminal pentagon Q 

as depicted in Fig. 2. 

 

 
Fig. 2. A Terminal Pentagon in G[n]. 

 
 

One can easily seen that nR(e5) = 3, nR(e3) = nR(e4) = 

gn – 2, nR(e1) + nR(e2) = 4(gn – 4) + 2. On the other hand 

the numbers of terminal pentagons are 4  3
n–1

. Since 

W(G[n]) = ∑   ( )        we have:  

 

W(G[n]) =   [∑   ((      )((      )   )     
   

(      )((      )   )   (      )  

 (      )  (      )  (      )   )  

    ( (    )   (    )   )]. 
 

To prove the lemma, it is enough to substitute gn and 

Sn–i, in above equation.  

 

We are now ready to prove the main result of this 

paper. 

Theorem. The Wiener index of G[n] is computed as 

follows: 

 

W(G[n]) =            
    

 
             

     
 

Proof. By choosing a set  of shortest paths for G[n] 

and Eq. 1, we have: 

 

W(G[n]) = ∑   ( )      (    ) ∑   ( )        
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 ∑   ( )        

 

To prove theorem, it is enough to apply Lemmas 1 

and 2.                                            
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